p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM.
نویسندگان
چکیده
Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial permeability, in both direct and indirect manners. Ezrin/radixin/moesin family proteins, the linkers between plasma membrane and actin cytoskeleton, have been reported to be involved in cell adhesion, motility and may modulate endothelial permeability. Studies have also shown that ERM is phosphorylated in response to various stimuli via p38MAPK, Rho/ROCK or PKC pathways. However, it is unclear that whether influenza infection could induce ERM phosphorylation and its relocalization. In the present study, we have found that there are cytoskeletal reorganization and permeability increases in the course of influenza virus infection, accompanied by upregulated levels of p-ERM. p-ERM's aggregation along the periphery of PMVEC upon influenza virus infection was detected via confocal microscopy. Furthermore, we sought to determine the role of p38MAPK, Rho/ROCK and PKC pathways in ERM phosphorylation as well as their involvement in influenza virus-induced endothelial malfunction. The activation of p38MAPK, Rho/ROCK and PKC pathways upon influenza virus stimulation were observed, as evidenced by the evaluation of phosphorylated p38 (p-p38), phosphorylated MKK (p-MKK) in p38MAPK pathway, ROCK1 in Rho/ROCK pathway and phosphorylated PKC (p-PKC) in PKC pathway. We also showed that virus-induced ERM phosphorylation was reduced by using p38MAPK inhibitor, SB203580 (20 μM), Rho/ROCK inhibitor, Y27632 (20 μM), PKC inhibitor, LY317615 (10 μM). Additionally, influenza virus-induced F-actin reorganization and hyperpermeability were attenuated by pretreatment with SB203580, Y27632 and LY317615. Taken together, we provide the first evidence that p38MAPK, Rho/ROCK and PKC are involved in influenza-induced cytoskeletal changes and permeability increases in PMVEC via phosphorylating ERM.
منابع مشابه
Screening differential miRNAs responsible for permeability increase in HUVECs infected with influenza A virus
Severe influenza infections are featured by acute lung injury, a syndrome of increased pulmonary microvascular permeability. A growing number of evidences have shown that influenza A virus induces cytoskeletal rearrangement and permeability increase in endothelial cells. Although miRNA's involvement in the regulation of influenza virus infection and endothelial cell (EC) function has been well ...
متن کاملERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability.
Advanced glycation end products (AGEs) accumulated in different pathological conditions have the potent capacity to alter cellular properties that include endothelial structural and functional regulations. The disruption of endothelial barrier integrity may contribute to AGE-induced microangiopathy and macrovasculopathy. Previous studies have shown that AGEs induced the rearrangement of actin a...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملCyclic Strain-Induced Cytoskeletal Rearrangement of Human Periodontal Ligament Cells via the Rho Signaling Pathway
BACKGROUND Although mechanical stimulations are known have a significant impact on cytoskeletal rearrangement, little is known regarding the behavioral alteration of human periodontal ligament cells (hPDLCs) under cyclic strain. The aim of this study was to elucidate the role of the Rho signaling pathway on cyclic strain-induced cytoskeletal rearrangement of hPDLCs. METHODS Healthy hPDLCs obt...
متن کاملParticulate matter disrupts human lung endothelial cell barrier integrity via Rho-dependent pathways
Increased exposure to ambient particulate matter (PM) is associated with elevated morbidity and mortality in patients with cardiopulmonary diseases and cancer. We and others have shown that PM induces lung microvascular barrier dysfunction which potentially enhances the systemic toxicity of PM. However, the mechanisms by which PM disrupts vascular endothelial integrity remain incompletely explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virus research
دوره 192 شماره
صفحات -
تاریخ انتشار 2014